y=x^(1/2)为什么等于二次根号下x
1个回答
展开全部
这是分数指数幂。
分数指数幂是正分数指数幂和负分数指数幂的统称。
分数指数幂是一个数的指数为分数,正数的分数指数幂是根式的另一种表示形式。
分数指数幂是根式的另一种表示形式,即n次根号(a的m次幂)可以写成a的m/n次幂。幂是指分数指数幂运算的结果,如8的1/3次幂=2,一个数的b分之a次方等于b次根号下这个数的a次方。求一个数的分数指数幂只要用笔算开方法来求得。
0的正分数指数幂等于0,0的负分数指数幂没有意义
指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂。
运算性质:
对于任意有理数r,s,均有下面的运算性质
(1)ar×as=a(r+s) (a>0,r,s∈Q)
(2) (ar)s=ars (a>0,r,s∈Q)
(3) (ab)r=ar×br (a>0,b>0,r∈Q)
根式与分数指数幂的互化:
这部分经常弄错。根号左上角的数当分数指数幂的分母,根号里面各个因式或因数的指数当分数指数幂的分子,注意,各个因式(因数)如果指数不同,要分开写。即是内做子,外做母,同母可不同子。
有理指数幂的运算和化简:
第一步是找同底数幂,调换位置时注意做到不重不漏,接着就是合并同类项,同底数幂的相乘,底数不变,指数相加,相除的话就是底数不变,指数相减。同底数幂相加减,能化简的合并化简,不能的按照降幂或升幂排列。
希望我能帮助你解疑释惑。
分数指数幂是正分数指数幂和负分数指数幂的统称。
分数指数幂是一个数的指数为分数,正数的分数指数幂是根式的另一种表示形式。
分数指数幂是根式的另一种表示形式,即n次根号(a的m次幂)可以写成a的m/n次幂。幂是指分数指数幂运算的结果,如8的1/3次幂=2,一个数的b分之a次方等于b次根号下这个数的a次方。求一个数的分数指数幂只要用笔算开方法来求得。
0的正分数指数幂等于0,0的负分数指数幂没有意义
指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂。
运算性质:
对于任意有理数r,s,均有下面的运算性质
(1)ar×as=a(r+s) (a>0,r,s∈Q)
(2) (ar)s=ars (a>0,r,s∈Q)
(3) (ab)r=ar×br (a>0,b>0,r∈Q)
根式与分数指数幂的互化:
这部分经常弄错。根号左上角的数当分数指数幂的分母,根号里面各个因式或因数的指数当分数指数幂的分子,注意,各个因式(因数)如果指数不同,要分开写。即是内做子,外做母,同母可不同子。
有理指数幂的运算和化简:
第一步是找同底数幂,调换位置时注意做到不重不漏,接着就是合并同类项,同底数幂的相乘,底数不变,指数相加,相除的话就是底数不变,指数相减。同底数幂相加减,能化简的合并化简,不能的按照降幂或升幂排列。
希望我能帮助你解疑释惑。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询