向量空间的维数怎么判断?

 我来答
帐号已注销
2021-02-08 · TA获得超过77万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:163万
展开全部

向量空间的维度:尽管组成基的向量组不变,但是所有基的含有向量的个数是一致的,比如三维空间基中向量组的个数必须是3,这个数目就是向量空间的维度。当然,这里按照惯例提前使用了3维空间,这里说的就是维度。

一个维度就是一个独立变量,也就是不受其它变量影响的变量。在这里shu,x1的取值不受任何限制,于是有一维,x2同理,所以有两维。例如:X=(x1,x2,x3,x4),其中x1+x2+x3+x4=0,这个因为四个变量中有三个都可以任意取,但是第四个受其它三个限制,所以是三维的。

扩展资料:

更抽象的说,一个F上的向量空间是一个F-模。V的成员叫作向量,而F的成员叫作标量。若F是实数域R,V称为实向量空间;若F是复数域C,V称为复向量空间;若F是有限域,V称为有限域向量空间;对一般域F,V称为F-向量空间。

首4个公理是说明向量V在向量加法中是个阿贝尔群,余下的4个公理应用于标量乘法。

以下都是一些很容易从向量空间公理推展出来的特性:

零向量0 ∈ V(公理3)是唯一的

a 0 = 0,∀ a ∈ F

0 v = 0,∀ v ∈ V,这里 0 是F的加法单位元

a v = 0 ,则可以推出要么 a = 0 ,要么 v = 0

v的加法逆元(公理4)是唯一的(写成−v),这两个写法v − w 及 v + (−w) 都是标准的

(−1)v = −v,∀ v ∈ V

(−a)v = a(−v) = −(av),∀ a ∈ F ,∀ v ∈ V

参考资料来源:百度百科-向量空间

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式