
3个回答
展开全部
xy''-y'+2=0
xy''-y' =-2
y''-(1/x)y' =-2/x
两边乘以 1/x
(1/x)[y''-(1/x)y' ]=-2/x^2
d/dx (y'/x) =-2/x^2
y'/x = 2/x + k1
y'= 2 + k1.x
y=2x + (1/2)k1.x^2+ C2
=2x + C1.x^2+ C2
xy''-y' =-2
y''-(1/x)y' =-2/x
两边乘以 1/x
(1/x)[y''-(1/x)y' ]=-2/x^2
d/dx (y'/x) =-2/x^2
y'/x = 2/x + k1
y'= 2 + k1.x
y=2x + (1/2)k1.x^2+ C2
=2x + C1.x^2+ C2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询