线性无关的特征向量是什么?
特征向量系是线性代数的重要概念之一。若线性变换的特征向量系所含向量个数等于 n,则称其特征向量系是完全的。
判断特征向量线性无关的方法:
1、显式向量组
将向量按列向量构造矩阵A。
对A实施初等行变换, 将A化成行梯矩阵。
梯矩阵的非零行数即向量组的秩。
如果向量组的秩 < 向量组所含向量的个数,则向量组线性相关。
否则向量组线性无关。
2、隐式向量组
一般是设向量组的一个线性组合等于0。
若能推出其组合系数只能全是0,则向量组线性无关。
否则向量组线性相关。
例如:a1=(1,1,3,1),a2=(3,-1,2,4),a3=(2,2,7,-1)
解:令x(1,1,3,1)+y(3,-1,2,4)+z(2,2,7,-1)=(0,0,0,0),
有x+3y+2z=0,且x-y+2z=0,且3x+2y+7z=0,且x+4y-z=0。
这个方程组有且只有零解,即x=y=z=0,故线性无关。
判断特征向量线性无关的方法:
1、显式向量组
将向量按列向量构造矩阵A。
对A实施初等行变换, 将A化成行梯矩阵。
梯矩阵的非零行数即向量组的秩。
如果向量组的秩 < 向量组所含向量的个数,则向量组线性相关。
否则向量组线性无关。
2、隐式向量组
一般是设向量组的一个线性组合等于0。
若能推出其组合系数只能全是0,则向量组线性无关。
否则向量组线性相关。
例如:a1=(1,1,3,1),a2=(3,-1,2,4),a3=(2,2,7,-1)
解:令x(1,1,3,1)+y(3,-1,2,4)+z(2,2,7,-1)=(0,0,0,0),
有x+3y+2z=0,且x-y+2z=0,且3x+2y+7z=0,且x+4y-z=0。
这个方程组有且只有零解,即x=y=z=0,故线性无关。