判断函数是否有界例题?
1个回答
展开全部
最常用的方法是看这个函数的值域是有限区间,则有界。另外,用有界函数的运算来判断。即两个有界函数的和,差,积是有界的。
1、理论法:若f(x)在定义域[a,b]上连续,或者放宽到常义可积(有限个第一类间断点),则f(x)在[a,b]上必然有界。
2、计算法:切分(a,b)内连续,limx→a+f(x)存在limx→a+f(x)存在;limx→b−f(x)存在limx→b−f(x)存在 则f(x)在定义域[a,b]内有界。
相关概念
设函数f(x)是某一个实数集A上有定义,如果存在正数M 对于一切X∈A都有不等式|f(x)|≤M的则称函数f(x)在A上有界,如果不存在这样定义的正数M则称函数f(x)在A上无界。
设f为定义在D上的函数,若存在数M(L),使得对每一个x∈D有: ƒ(x)≤M(ƒ(x)≥L),则称ƒ在D上有上(下)界的函数,M(L)称为ƒ在D上的一个上(下)界。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询