大数据开发这么学习
展开全部
第一阶段:Hadoop生态架构技术
1、语言基础
Java:多理解和实践在Java虚拟机的内存管理、以及多线程、线程池、设计模式、并行化就可以,不需要深入掌握。
Linux:系统安装、基本命令、网络配置、Vim编辑器、进程管理、Shell脚本、虚拟机的菜单熟悉等等。
Python:基础语法,数据结构,函数,条件判断,循环等基础知识。
2、环境准备
这里介绍在windows电脑搭建完全分布式,1主2从。
VMware虚拟机、Linux系统(Centos6.5)、Hadoop安装包,这里准备好Hadoop完全分布式集群环境。
3、MapReduce
MapReduce分布式离线计算框架,是Hadoop核心编程模型。
4、HDFS1.0/2.0
HDFS能提供高吞吐量的数据访问,适合大规模数据集上的应用。
5、Yarn(Hadoop2.0)
Yarn是一个资源调度平台,主要负责给任务分配资源。
6、Hive
Hive是一个数据仓库,所有的数据都是存储在HDFS上的。使用Hive主要是写Hql。
7、Spark
Spark 是专为大规模数据处理而设计的快速通用的计算引擎。
8、SparkStreaming
Spark Streaming是实时处理框架,数据是一批一批的处理。
9、SparkHive
Spark作为Hive的计算引擎,将Hive的查询作为Spark的任务提交到Spark集群上进行计算,可以提高Hive查询的性能。
10、Storm
Storm是一个实时计算框架,Storm是对实时新增的每一条数据进行处理,是一条一条的处理,可以保证数据处理的时效性。
11、Zookeeper
Zookeeper是很多大数据框架的基础,是集群的管理者。
12、Hbase
Hbase是一个Nosql数据库,是高可靠、面向列的、可伸缩的、分布式的数据库。
13、Kafka
kafka是一个消息中间件,作为一个中间缓冲层。
14、Flume
Flume常见的就是采集应用产生的日志文件中的数据,一般有两个流程。
一个是Flume采集数据存储到Kafka中,方便Storm或者SparkStreaming进行实时处理。
另一个流程是Flume采集的数据存储到HDFS上,为了后期使用hadoop或者spark进行离线处理。
第二阶段:数据挖掘算法
1、中文分词
开源分词库的离线和在线应用
2、自然语言处理
文本相关性算法
3、推荐算法
基于CB、CF,归一法,Mahout应用。
4、分类算法
NB、SVM
5、回归算法
LR、DecisionTree
6、聚类算法
层次聚类、Kmeans
7、神经网络与深度学习
NN、Tensorflow
1、语言基础
Java:多理解和实践在Java虚拟机的内存管理、以及多线程、线程池、设计模式、并行化就可以,不需要深入掌握。
Linux:系统安装、基本命令、网络配置、Vim编辑器、进程管理、Shell脚本、虚拟机的菜单熟悉等等。
Python:基础语法,数据结构,函数,条件判断,循环等基础知识。
2、环境准备
这里介绍在windows电脑搭建完全分布式,1主2从。
VMware虚拟机、Linux系统(Centos6.5)、Hadoop安装包,这里准备好Hadoop完全分布式集群环境。
3、MapReduce
MapReduce分布式离线计算框架,是Hadoop核心编程模型。
4、HDFS1.0/2.0
HDFS能提供高吞吐量的数据访问,适合大规模数据集上的应用。
5、Yarn(Hadoop2.0)
Yarn是一个资源调度平台,主要负责给任务分配资源。
6、Hive
Hive是一个数据仓库,所有的数据都是存储在HDFS上的。使用Hive主要是写Hql。
7、Spark
Spark 是专为大规模数据处理而设计的快速通用的计算引擎。
8、SparkStreaming
Spark Streaming是实时处理框架,数据是一批一批的处理。
9、SparkHive
Spark作为Hive的计算引擎,将Hive的查询作为Spark的任务提交到Spark集群上进行计算,可以提高Hive查询的性能。
10、Storm
Storm是一个实时计算框架,Storm是对实时新增的每一条数据进行处理,是一条一条的处理,可以保证数据处理的时效性。
11、Zookeeper
Zookeeper是很多大数据框架的基础,是集群的管理者。
12、Hbase
Hbase是一个Nosql数据库,是高可靠、面向列的、可伸缩的、分布式的数据库。
13、Kafka
kafka是一个消息中间件,作为一个中间缓冲层。
14、Flume
Flume常见的就是采集应用产生的日志文件中的数据,一般有两个流程。
一个是Flume采集数据存储到Kafka中,方便Storm或者SparkStreaming进行实时处理。
另一个流程是Flume采集的数据存储到HDFS上,为了后期使用hadoop或者spark进行离线处理。
第二阶段:数据挖掘算法
1、中文分词
开源分词库的离线和在线应用
2、自然语言处理
文本相关性算法
3、推荐算法
基于CB、CF,归一法,Mahout应用。
4、分类算法
NB、SVM
5、回归算法
LR、DecisionTree
6、聚类算法
层次聚类、Kmeans
7、神经网络与深度学习
NN、Tensorflow
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询