真数的取值范围是什么?
7个回答
展开全部
真数的定义域是大于零。若真数的式子中没有根号,则要求真数大于零即可;若真数的式子中有根号,则除了要求真数大于零之外,还要保证根号里面的式子大于等于零。
真数的定义为:若a的x次方等于N(a>0,且a不等于1),则数x称为以a为底N的对数,记作x=logaN。其中,a称为对数的底数,N即为真数。
求定义域的方法:
1、根据解析式要求如偶次根式的被开方大于零,分母不能为零等;
2、根据实际问题的要求确定自变量的范围;
3、根据相关解析式的定义域来确定所求函数自变量的范围。
求函数定义域的主要依据:
1、分式的分母不为零;
2、偶次方根的被开方数大于等于零;
3、对数的真数大于零;
4、指数式、对数式的底数必须大于零且不等于1;
5、实际问题中注意自变量的范围,比如大于0或者只能取整数等等。
展开全部
真数(real number)是指在数轴上表示的数,包括整数、分数、无理数和有理数。真数的取值范围是负无穷到正无穷,表示为(-∞, +∞)。
具体来说,真数包括所有的有理数和无理数。有理数是可以表示为分数形式的数,如整数、分数和有限小数(可以在有限步骤内表示为分数形式)。无理数是不能表示为分数形式的数,它们的十进制表示是无限不循环的小数,如π(圆周率)、e(自然对数的底数)。
整数可以表示为{..., -3, -2, -1, 0, 1, 2, 3, ...}。
有理数可以表示为{整数, 分数}的集合,如2/3、-5/4、1/2等。
无理数不能用分数表示,如√2、π、e等。
因此,真数的取值范围是包括所有的有理数和无理数的实数范围,从负无穷到正无穷。
具体来说,真数包括所有的有理数和无理数。有理数是可以表示为分数形式的数,如整数、分数和有限小数(可以在有限步骤内表示为分数形式)。无理数是不能表示为分数形式的数,它们的十进制表示是无限不循环的小数,如π(圆周率)、e(自然对数的底数)。
整数可以表示为{..., -3, -2, -1, 0, 1, 2, 3, ...}。
有理数可以表示为{整数, 分数}的集合,如2/3、-5/4、1/2等。
无理数不能用分数表示,如√2、π、e等。
因此,真数的取值范围是包括所有的有理数和无理数的实数范围,从负无穷到正无穷。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
真数是指实数的一种分类,实数包括所有的有理数和无理数。有理数是可以表示为两个整数的比值的数,包括整数、分数和小数(有限小数和循环小数)。无理数是不能表示为两个整数的比值的数,它们的小数表示是无限不循环的。
真数的取值范围是整个实数数轴。实数数轴是一个无限延伸的线段,包括所有的有理数和无理数。整数、分数、小数和根号下的无理数都包含在真数的取值范围内。
总结起来,真数的取值范围是所有的实数,即 (-∞, +∞)。
真数的取值范围是整个实数数轴。实数数轴是一个无限延伸的线段,包括所有的有理数和无理数。整数、分数、小数和根号下的无理数都包含在真数的取值范围内。
总结起来,真数的取值范围是所有的实数,即 (-∞, +∞)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
真数的取值范围:x=logaN。一个数,它的对数是已知数,就称此数为已知数的真数。真数亦称反对数,是相对于假数(即对数)而言的数,零没有对数。设a是个不等于1的正数,即a>0,且a≠1。若ap=b,则称p为b的以a为底的对数,而称b为p的以a为底的真数。记作p=logab。例如,以2为底,则8的对数是3,3的真数是8。
追答
真数的取值范围:x=logaN。一个数,它的对数是已知数,就称此数为已知数的真数。真数亦称反对数,是相对于假数(即对数)而言的数,零没有对数。设a是个不等于1的正数,即a>0,且a≠1。若ap=b,则称p为b的以a为底的对数,而称b为p的以a为底的真数。记作p=logab。例如,以2为底,则8的对数是3,3的真数是8。
真数的取值范围:x=logaN。一个数,它的对数是已知数,就称此数为已知数的真数。真数亦称反对数,是相对于假数(即对数)而言的数,零没有对数。设a是个不等于1的正数,即a>0,且a≠1。若ap=b,则称p为b的以a为底的对数,而称b为p的以a为底的真数。记作p=logab。例如,以2为底,则8的对数是3,3的真数是8。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
真数的取值范围是所有实数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询