高数:已知f(x)连续,F(x)=定积分(下0上x)(x^2-t^2)f(t)dt,其中?
3个回答
展开全部
F(x) =∫(0->x) (x^2-t^2) f(t)dt
F(1) =2
∫(0->1) f(t)dt =1
To find : F'(1)
solution:
F(x)
=∫(0->x) (x^2-t^2) f(t)dt
=x^2.∫(0->x) f(t)dt -∫(0->x) t^2.f(t) dt
F'(x)
=x^2.f(x) + 2x.∫(0->x) f(t)dt -x^2.f(x)
=2x.∫(0->x) f(t)dt
F'(1)
=2∫(0->1) f(t)dt
=2(1)
=2
F(1) =2
∫(0->1) f(t)dt =1
To find : F'(1)
solution:
F(x)
=∫(0->x) (x^2-t^2) f(t)dt
=x^2.∫(0->x) f(t)dt -∫(0->x) t^2.f(t) dt
F'(x)
=x^2.f(x) + 2x.∫(0->x) f(t)dt -x^2.f(x)
=2x.∫(0->x) f(t)dt
F'(1)
=2∫(0->1) f(t)dt
=2(1)
=2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询