正切函数的单调区间是什么?
展开全部
正切函数的单调区间是:
正切函数y=tanⅹ,其定义域为{x|x≠kπ+π/2,k∈z},在定义域内其图像是不连续的,所以正切函数y=tanⅹ在整个定义域内不具备单调性,它不是单调函数,但是在一个个的独立的小区间内,图形是呈上升趋势的,是单调递增的,其增区间为(-π/2+kπ,π/2+kπ),k∈z。
单调性的判断方法:
1、导数法
首先对函数进行求导,令导函数等于零,得X值,判断X与导函数的关系,当导函数大于零时是增函数,小于零是减函数。
2、定义法
设x1,x2是函数f(x)定义域上任意的两个数,且x1<x2,若f(x1)<f(x2),则此函数为增函数;反知,若f(x1)>f(x2),则此函数为减函数。
3、性质法
若函数f(x)、g(x)在区间B上具有单调性,则在区间B上有:
⑴f(x)与f(x)+C(C为常数)具有相同的单调性;
⑵f(x)与c•f(x)当c>0具有相同的单调性,当c<0具有相反的单调性;
⑶当f(x)、g(x)都是增(减)函数,则f(x)+g(x)都是增(减)函数;
⑷当f(x)、g(x)都是增(减)函数,则f(x)•g(x)当两者都恒大于0时也是增(减)函数,当两者都恒小于0时也是减(增)函数。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询