已知函数f(x)=2^x,x1,x2是任意实数(x1不等于x2),证明:1/2[f(x1)+f(x2)]>f[(x1+x2)/2]

 我来答
机器1718
2022-07-10 · TA获得超过6856个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:162万
展开全部
由均值不等式(a+b)/2>=√ab, 当a=b时取等号,
因x1x2,所以有:
[f(x1)+f(x2)]/2=(2^x1+2^x2)/2>√(2^x1*2^x2)=2^(x1+x2)=f[(x1+x2)/2]
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式