∫dx/(x^6(1+x^2))
1个回答
展开全部
令x=1/y,则:y=1/x,dx=-(1/y^2)dy.
∴∫{1/[x^6(1+x^2)]}dx
=-∫[y^6/(1+1/y^2)](1/y^2)dy
=-∫[y^6/(1+y^2)]dy
=-∫{[(y^6+y^4)-(y^4+y^2)+(y^2+1)-1]/(1+y^2)}dy
=-∫y^4dy+∫y^2dy-∫dy+∫[1/(1+y^2)]dy
=-(1/5)y^5+(1/3)y^3-y+arctany+C
=-(1/5)(1/x)^5+(1/3)(1/x)^3-1/x+arctan(1/x)+C
=-1/(5x^5)+1/(3x^3)-1/x+arctan(1/x)+C.
∴∫{1/[x^6(1+x^2)]}dx
=-∫[y^6/(1+1/y^2)](1/y^2)dy
=-∫[y^6/(1+y^2)]dy
=-∫{[(y^6+y^4)-(y^4+y^2)+(y^2+1)-1]/(1+y^2)}dy
=-∫y^4dy+∫y^2dy-∫dy+∫[1/(1+y^2)]dy
=-(1/5)y^5+(1/3)y^3-y+arctany+C
=-(1/5)(1/x)^5+(1/3)(1/x)^3-1/x+arctan(1/x)+C
=-1/(5x^5)+1/(3x^3)-1/x+arctan(1/x)+C.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询