勾股定理逆定理证明过程是什么?
勾股定理逆定理是指如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形。最长边所对的角为直角。
勾股定理的逆定理的证明方法:
已知在△ABC中,设AB=c,AC=b,BC=a,且a2+b2=c2。求证∠ACB=90°
证明:在△ABC内部作一个∠HCB=∠A,使H在AB上。
∵∠B=∠B,∠A=∠HCB
∴△ABC∽△CBH(有两个角对应相等的两个三角形相似)
∴AB/BC=BC/BH,即BH=a2/c
而AH=AB-BH=c-a2/c=(c2-a2)/c=b2/c
∴AH/AC=(b2/c)/b=b/c=AC/AB
∵∠A=∠A
∴△ACH∽△ABC(两边对应成比例且夹角相等的两个三角形相似)
∴△ACH∽△CBH(相似三角形的传递性)
∴∠AHC=∠CHB
∵∠AHC+∠CHB=∠AHB=180°
∴∠AHC=∠CHB=90°
∴∠ACB=∠AHC=90°
勾股定理证明方法:
做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像下图那样拼成两个正方形。
发现四个直角三角形和一个边长为a的正方形和一个边长为b的正方形,刚好可以组成边长为(a+b)的正方形;四个直角三角形和一个边长为c的正方形也刚好凑成边长为(a+b)的正方形。所以可以看出以上两个大正方形面积相等。可以列出公式为:a2+b2+4×1/2ab=c2++4×1/2ab,计算可得:a2+b2=c2。
勾股定理的逆定理是判断三角形是否为锐角、直角或钝角三角形的一个简单的方法。若c为最长边,且a_+b_=c_,则ΔABC是直角三角形;如果a_+b_>c_,则ΔABC是锐角三角形;如果a_+b_
根据余弦定理,在△ABC中,cosC=(a_+b_-c_)÷2ab。
由于a_+b_=c_,故cosC=0;
因为0°<∠C<180°,所以∠C=90°。(证明完毕)
已知在△ABC中,,求证∠C=90°
证明:作AH⊥BC于H
⑴若∠C为锐角,设BH=y,AH=x
得x_+y_=c_,
又∵a_+b_=c_,
∴a_+b_=x_+y_(A)
但a>y,b>x,∴a_+b_>x_+y_(B)
(A)与(B)矛盾,∴∠C不为锐角
⑵若∠C为钝角,设HC=y,AH=x
得a_+b_=c_=x_+(a+y)_=x_+y_+2ay+a_
∵x_+y_=b_,
得a_+b_=c_=a_+b_+2ay
2ay=0
∵a≠0,∴y=0
这与∠C是钝角相矛盾,∴∠C不为钝角
综上所述,∠C必为直角