导数图像和原函数图像有什么关系?

 我来答
知识改变命运7788
高能答主

2022-03-10 · 只要付出,就有收获,好好学习。
知识改变命运7788
采纳数:1341 获赞数:7439

向TA提问 私信TA
展开全部

内容如下:

1、导函数图像在x轴上方的部分对应原函数的图像单调上升。

2、导函数图像在x轴下方的部分对应原函数的图像单调下降。

3、导函数图像穿越x轴的位置是原函数的极值点

如果函数f(x)在(a,b)中每一点处都可导,则称f(x)在(a,b)上可导,则可建立f(x)的导函数。

如果f(x)在(a,b)内可导,且在区间端点a处的右导数和端点b处的左导数都存在,则称f(x)在闭区间[a,b]上可导,f'(x)为区间[a,b]上的导函数。

导数极值:

一般地,设函数y=f(x)在x=x0及其附近有定义,如果f(x0)的值比x0附近所有各点的函数值都大,我们说f(x0)是函数y=f(x)的一个极大值;如果f(x0)的值比x0附近所有各点的函数值都小,我们说f(x0)是函数y=f(x)的一个极小值。极大值与极小值统称极值。

在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值。请注意以下几点:

1.极值是一个局部概念。由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小。

2.函数的极值不是唯一的。即一个函数在某区间上或定义域内极大值或极小值可以不止一个。

3.极大值与极小值之间无确定的大小关系。即一个函数的极大值未必大于极小值。

4.函数的极值点一定出现在区间的内部,区间的端点不能成为极值点。而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式