对于二重积分,其中D是由直线y=x,x=2以及双曲线y=x分之一(x>0)所围成的闭区域,将其化为
2个回答
展开全部
{ y = x²、y = 0
{ x = 1
∫∫ xy dxdy
= ∫[0→1] dx ∫[0→x²] xy dy
= ∫[0→1] x * [y²/2]:[0→x²] dx
= ∫[0→1] x/2 * x⁴ dx
= ∫[0→1] (1/2)x⁵ dx
= (1/2)(1/6)x⁶:[0→1]
= 1/12
扩展资料
意义
当被积函数大于零时,二重积分是柱体的体积。
当被积函数小于零时,二重积分是柱体体积负值。[2]
几何意义
在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询