除不尽时,商一定是循环小数吗?
展开全部
如果分子分母都是有理数,结论就是对.
不循环小数是无理数,有理数的运算无法得出它.
我们知道,分数是有理数.当把一个分数化成小数除不尽时,结果不可能是无限不循环的,否则便成了无理数了,这便与“分数是有理数”相矛盾.所以,分数化小数除不尽时,结果必为循环小数.
反之,循环小数也必可化为分数.
有部分小学教师认为:两数相除除不尽时,商可能是循环小数,也可能是无限不循环小数.这种认识是错误的.
我们假设自然数a除以自然数b,除不尽,那么商一定是无限小数.在除的过程中,每次除得的余数要比除数小,余数只能是1、2、3、……b-1中的一个,这样最多连续有(b-1)个余数彼此幌嗤赽个余数必定与前(b-1)个余数中的某一个相同,余数重复出现了,商也就不断重复出现,因此得到循环小数.如果除数是17,商最多从第18位起开始重复出现;如果除数是43,商最多从第44位起重复出现.只要你有耐心一直除,商最多从第(除数+1)位起一定会重复出现的.
如果是小数除法呢?根据除法中商不变的性质,小数除法都能转化为整数除法.
综上所述,两数相除若不能除尽,商一定是循环小数.同样的道理,一个最简分数如果不能化成有限小数,则必定能化成循环小数.
不循环小数是无理数,有理数的运算无法得出它.
我们知道,分数是有理数.当把一个分数化成小数除不尽时,结果不可能是无限不循环的,否则便成了无理数了,这便与“分数是有理数”相矛盾.所以,分数化小数除不尽时,结果必为循环小数.
反之,循环小数也必可化为分数.
有部分小学教师认为:两数相除除不尽时,商可能是循环小数,也可能是无限不循环小数.这种认识是错误的.
我们假设自然数a除以自然数b,除不尽,那么商一定是无限小数.在除的过程中,每次除得的余数要比除数小,余数只能是1、2、3、……b-1中的一个,这样最多连续有(b-1)个余数彼此幌嗤赽个余数必定与前(b-1)个余数中的某一个相同,余数重复出现了,商也就不断重复出现,因此得到循环小数.如果除数是17,商最多从第18位起开始重复出现;如果除数是43,商最多从第44位起重复出现.只要你有耐心一直除,商最多从第(除数+1)位起一定会重复出现的.
如果是小数除法呢?根据除法中商不变的性质,小数除法都能转化为整数除法.
综上所述,两数相除若不能除尽,商一定是循环小数.同样的道理,一个最简分数如果不能化成有限小数,则必定能化成循环小数.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询