有理数的定义是什么

 我来答
机器1718
2022-05-31 · TA获得超过6829个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:160万
展开全部

有理数是整数和分数的集合,有理数的小数部分是有限或为无限循环的数。下面是有理数的相关知识,供大家参考。

有理数的定义

有理数是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。数学上,有理数是一个整数a和一个正整数b的比,例如3/8,通则为a/b。

0也是有理数。有理数是整数和分数的集合,整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。

数轴是研究数学的重要模型,也是“数形结合”的重要体现。数轴是一条可以向两端无限延伸的直线,数轴的三要素:原点、单位长度、正方向是根据实际需要“规定”的,通常选取向右的方向为数轴的正方向。任何一个有理数都可以用数轴上的一个点表示。

有理数的性质

1.顺序性

对于任意两个有理数a、b,在a<b、a=b、a>b三种关系中,有且只有一种成立。

如果a<b,那么b>a。(不等的对逆性)

如果a<b,b<c,那么a<c。(不等的传递性)

如果a=b,b=c,那么a=c。(相等的传递性)

如果a=b,那么b=a。(相等的反身性)

2.对加、减、乘、除(0不为除数)

四则运算的封闭性,即任意一对有理数,对应的和、差、积、商(0不为除数)仍为有理数。

3.稠密性,即任意两个有理数之间存在着无限多个有理数。

集合关系

由于有理数集中所有元素均为有理数,因此可得:

整数集、分数集、小数集、自然数集,都是有理数集的一个子集。

即:有理数包含整数、分数、小数、自然数等(不考虑重复列举关系)

有理数集是实数集的一个子集,也是复数集的一个子集。

即:有理数是实数(或复数)的一部分。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式