等额本息的计算方法:每月还款额=贷款本金×[月利率×(1+月利率) ^ 还款月数]÷{[(1+月利率) ^ 还款月数]-1}。
将贷款本金、月利率、还款月数带入即可算出每个月还多少钱。本息和=300000(1+5.049%*30)=754410元,每月应还款=744410/(30*12)=2095.58(元)。
等额本息还款法,即借款人每月按相等的金额偿还贷款本息,其中每月贷款利息按月初剩余贷款本金计算并逐月结清。由于每月的还款额相等,因此,在贷款初期每月的还款中,剔除按月结清的利息后,所还的贷款本金就较少;在贷款末期每月的还款中,剔除按月结清的利息后,所还的贷款本金就较多。
这种还款方式,实际占用银行贷款的数量更多、占用的时间更长,同时它还便于借款人合理安排每月的生活和进行理财(如以租养房等),对于精通投资、擅长于“以钱生钱”的人来说,无疑是最好的选择。
扩展资料:
推导过程
等额本息还款公式推导 设贷款总额为A,银行月利率为β,总期数为m(个月),月还款额设为X,
则各个月末所欠银行贷款为:
第一个月末:
第二个月末:
第三个月末:
?
由此可得第n个月末所欠银行贷款为:
由于还款总期数为m,也即第m月末刚好还完银行所有贷款,因此有:
由此求得:
参考资料来源:百度百科——等额本息还款法
本金*年利率/12*(1+年利率/12)^贷款月数/((1+年利率/12)^贷款月数-1)
贷款100万,利息2分,贷款10个月,需要每月还款111326.53元,本金和利息一共是1113265.3元。
等额本息,是指一种贷款的还款方式。等额本息是在还款期内,每月偿还同等数额的贷款(包括本金和利息)。
拓展资料:
等额本息是指一种贷款的还款方式,指在还款期内,每月偿还同等数额的贷款(包括本金和利息)。
等额本息和等额本金是不一样的概念,虽然刚开始还款时每月还款额可能会低于等额本金还款方式的额度,但是最终所还利息会高于等额本金还款方式,该方式经常被银行使用。
即把按揭贷款的本金总额与利息总额相加,然后平均分摊到还款期限的每个月中,每个月的还款额是固定的,但每月还款额中的本金比重逐月递增、利息比重逐月递减。这种方法是最为普遍,也是大部分银行长期推荐的方式。
等额本息还款法即借款人每月按相等的金额偿还贷款本息,其中每月贷款利息按月初剩余贷款本金计算并逐月结清。
等额本金还款法即借款人每月按相等的金额(贷款金额/贷款月数)偿还贷款本金,每月贷款利息按月初剩余贷款本金计算并逐月结清,两者合计即为每月的还款额。
计算公式
每月还款额=[贷款本金×月利率×(1+月利率)^还款月数]÷[(1+月利率)^还款月数-1]
还款公式推导
设贷款总额为A,银行月利率为β,总期数为m(个月),月还款额设为X,则各个月所欠银行贷款为:
第一个月A(1+β)-X
第二个月(A(1+β)-X)(1+β)-X=A(1+β)^2-X[1+(1+β)]
第三个月[A(1+β)-X)(1+β)-X](1+β)-X =A(1+β)^3-X[1+(1+β)+(1+β)^2] ?
由此可得第n个月后所欠银行贷款为 A(1+β)^n _X[1+(1+β)+(1+β)^2+?+(1+β)^(n-1)]= A(1+β)^n _X[(1+β)^n - 1]/β
由于还款总期数为m,也即第m月刚好还完银行所有贷款,
因此有 A(1+β)^m _X[(1+β)^m - 1]/β=0
由此求得 X = Aβ(1+β)^m /[(1+β)^m - 1]
还款法与等额本金计算
1.等额本息还款法还款金额:
每月应还金额:a*[i*(1+i)^n]/[(1+i)^n-1]
(注:a:贷款本金 ,i:贷款月利率, n:贷款月数 )
2.等额本金还款法还款金额:
每月应还本金:a/n
每月应还利息:an*i/30*dn
每月应还总金额:a/n+ an*i/30*dn
(注:a:贷款本金,i:贷款月利率,n:贷款月数,an:第n个月贷款剩余本金,a1=a,a2=a-a/n,a3=a-2*a/n...以次类推dn 第n个月的实际天数,如平年2月为28,3月为31,4月为30,以次类推)
2022-07-28 · 百度认证:北京惠企网络技术有限公司官方账号