函数y=f(x)由方程y=1+xe^xy确定,求y'|x=0和y''|x=0各是多少
展开全部
y=1+x.e^(xy)
x=0,y=1
y' = [1+ x(xy' +x) ] e^(xy)
y' [1- x^2.e^(xy)] = (1+x)e^(xy)
y' = (1+x)e^(xy) /[1- x^2.e^(xy)]
y'|x=0 = 1
y' = (1+x)e^(xy) /[1- x^2.e^(xy)]
y'' ={ [1- x^2.e^(xy)] [1+ (1+x)(xy'+y) ] e^(xy) - (1+x)e^(xy).[ -2x+ x^2(xy'+y)]e^(xy) } /[1- x^2.e^(xy)]^2
y''|x=0 =(2 -0)/1 =2
x=0,y=1
y' = [1+ x(xy' +x) ] e^(xy)
y' [1- x^2.e^(xy)] = (1+x)e^(xy)
y' = (1+x)e^(xy) /[1- x^2.e^(xy)]
y'|x=0 = 1
y' = (1+x)e^(xy) /[1- x^2.e^(xy)]
y'' ={ [1- x^2.e^(xy)] [1+ (1+x)(xy'+y) ] e^(xy) - (1+x)e^(xy).[ -2x+ x^2(xy'+y)]e^(xy) } /[1- x^2.e^(xy)]^2
y''|x=0 =(2 -0)/1 =2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询