求a/(ab+a+1) +b/(bc+b+1)+c/(ca+c+1)的值.
1个回答
展开全部
因为:a/(ab+a+1)=a/(ab+a+abc)=1/(b+1+bc)
可知:a/(ab+a+1)=1/b *b/(bc+b+1)
又有:c/(ca+c+1)=c/(ca+c+abc)=1/(a+1+ab)=1/a* a/(ab+a+1)
=1/a* 1/b *b/(bc+b+1)=1/ab* b/(bc+b+1)
所以:a/(ab+a+1) +b/(bc+b+1) +c/(ca+c+1)
=1/b *b/(bc+b+1)+b/(bc+b+1)+1/ab* b/(bc+b+1)
=(a+ab+abc)/(a+ab+abc)
=1
可知:a/(ab+a+1)=1/b *b/(bc+b+1)
又有:c/(ca+c+1)=c/(ca+c+abc)=1/(a+1+ab)=1/a* a/(ab+a+1)
=1/a* 1/b *b/(bc+b+1)=1/ab* b/(bc+b+1)
所以:a/(ab+a+1) +b/(bc+b+1) +c/(ca+c+1)
=1/b *b/(bc+b+1)+b/(bc+b+1)+1/ab* b/(bc+b+1)
=(a+ab+abc)/(a+ab+abc)
=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询