在三角形abc中 若sinA=2cosBsinC 则三角形abc是什么三角形
5个回答
展开全部
sinA=sin(180-B-C)=sin(B+C)
=sinBcosC+sinCcosB
sinBcosC+sinCcosB=2cosBsinC
sinBcosC-sinCcosB=0
sin(B-C)=0
B=C+90>90
钝角三角形
=sinBcosC+sinCcosB
sinBcosC+sinCcosB=2cosBsinC
sinBcosC-sinCcosB=0
sin(B-C)=0
B=C+90>90
钝角三角形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
正弦定理:
a/sinA=c/sinC
又sinA=2cosBsinC ,得
cosB=a/(2c)
余弦定理
cosB=(a^2+c^2-b^2)/(2ac),得
b=c
三角形abc是等腰三角形
a/sinA=c/sinC
又sinA=2cosBsinC ,得
cosB=a/(2c)
余弦定理
cosB=(a^2+c^2-b^2)/(2ac),得
b=c
三角形abc是等腰三角形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:
A+B+C = 180o
∴ sinA = sin(B+C) = 2cosBsinC = sin(B+C)-sin(B-C)
推出 sin(B-C) = 0
∵ -180o < B-C < 180o
∴ B-C = 0
∴ 该三角形为等腰三角形。
A+B+C = 180o
∴ sinA = sin(B+C) = 2cosBsinC = sin(B+C)-sin(B-C)
推出 sin(B-C) = 0
∵ -180o < B-C < 180o
∴ B-C = 0
∴ 该三角形为等腰三角形。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2010-08-23
展开全部
如果是选择题,可以赋特值:A=90度,B=C=45度。满足结果。
A=90度,B=60度,C=30度 不满足所以一般直角三角形不行。
B=C=30度,满足,所以只能证明是等腰三角形,A为顶角。
A=90度,B=60度,C=30度 不满足所以一般直角三角形不行。
B=C=30度,满足,所以只能证明是等腰三角形,A为顶角。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询