证明两个奇函数之和还是奇函数?

 我来答
天罗网17
2022-05-22 · TA获得超过6189个赞
知道小有建树答主
回答量:306
采纳率:100%
帮助的人:73.1万
展开全部
设函数f(x)和g(x)都是奇函数,并令它们的和是F(x),由于f(-x)=-f(x),g(-x)=-g(x),这样F(-x)=f(-x)+g(-x)=-f(x)-g(x)=-[f(x)+g(x)]=-F(x),这就证明了两个奇函数之和还是一个奇函数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式