初中数学题,在线等
2个回答
展开全部
(1)
抛物线过(0, 2): 2 = m² + m, m² + m - 2 = (m + 2)(m - 1) = 0
m = 1或m = -2
按图, 抛物线的对称轴为x = -m, 顶点(-m, m), m < 0, 即m = -2
(2)
y = (x + m)² + m = -x
x² + (2m+1)x + m(m+1) = (x + m)(x + m+1) = 0
C(-m, m), E(-m - 1, m+1); 显然C为顶点
根据对称性, H在对称轴x = -m上,令H(-m, h)
y = x² + 2mx + m² + m = 0, x = -m + √(-m), 或x = -m - √(-m)
A(-m - √(-m), 0), B(-m +√(-m), 0)
r² = CH² = (h - m)² = HB² = (-m +√(-m) + m)² + (0 - h)²
h = (m + 1)/2
r² = [(m + 1)/2 - m]² = [(1 - m)/2]²
r = (1 - m)/2
H与y = 1的距离为 d = 1 - (m + 1)/2 = (1 - m)/2 = r, 即圆与y = 1相切。
(3)
令D(d, -d), 0 < d < -m
H(-m, (m + 1)/2)
DE = 2EC, 则:E的横坐标 - D的横坐标 = 2(C的横坐标 - E的横坐标)
-m - 1 - d = 2[-m - (-m - 1)]
d = -m - 3
D(-m - 3, m + 3)
DH² = r² = (1 - m)²/4 = (-m - 3 + m)² + [m + 3 - (m + 1)/2]²
m = -5
r = (1 - m)/2 = 3
抛物线过(0, 2): 2 = m² + m, m² + m - 2 = (m + 2)(m - 1) = 0
m = 1或m = -2
按图, 抛物线的对称轴为x = -m, 顶点(-m, m), m < 0, 即m = -2
(2)
y = (x + m)² + m = -x
x² + (2m+1)x + m(m+1) = (x + m)(x + m+1) = 0
C(-m, m), E(-m - 1, m+1); 显然C为顶点
根据对称性, H在对称轴x = -m上,令H(-m, h)
y = x² + 2mx + m² + m = 0, x = -m + √(-m), 或x = -m - √(-m)
A(-m - √(-m), 0), B(-m +√(-m), 0)
r² = CH² = (h - m)² = HB² = (-m +√(-m) + m)² + (0 - h)²
h = (m + 1)/2
r² = [(m + 1)/2 - m]² = [(1 - m)/2]²
r = (1 - m)/2
H与y = 1的距离为 d = 1 - (m + 1)/2 = (1 - m)/2 = r, 即圆与y = 1相切。
(3)
令D(d, -d), 0 < d < -m
H(-m, (m + 1)/2)
DE = 2EC, 则:E的横坐标 - D的横坐标 = 2(C的横坐标 - E的横坐标)
-m - 1 - d = 2[-m - (-m - 1)]
d = -m - 3
D(-m - 3, m + 3)
DH² = r² = (1 - m)²/4 = (-m - 3 + m)² + [m + 3 - (m + 1)/2]²
m = -5
r = (1 - m)/2 = 3
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询