线性代数,为什么如果齐次方程组只有零解,对应的非齐次方程组可能无解可能有唯一解?
1个回答
展开全部
因为如果齐次方程组只有零解,说明r(A)=n(其中r(A)为矩阵A的秩),对应的非齐次方程组有如下两种情况:
1、当r(A)=r(A,b)=n时,说明非齐次方程组有解,且是唯一的;
2、当r(b)不等于r(A,b)时,非齐次方程组无解。
非齐次线性方程组Ax=b有解的充分必要条件是:系数矩阵的秩等于增广矩阵的秩,即rank(A)=rank(A, b)(否则为无解)。
非齐次线性方程组有唯一解的充要条件是rank(A)=n。非齐次线性方程组有无穷多解的充要条件是rank(A)<n。(rank(A)表示A的秩)
扩展资料:
非齐次线性方程组Ax=b的求解步骤:
1、对增广矩阵B施行初等行变换化为行阶梯形。若R(A)<R(B),则方程组无解。
2、若R(A)=R(B),则进一步将B化为行最简形。
3、设R(A)=R(B)=r;把行最简形中r个非零行的非0首元所对应的未知数用其余n-r个未知数(自由未知数)表示,并令自由未知数分别等于
即可写出含n-r个参数的通解。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询