圆的知识点归纳总结
圆的知识点归纳总结:
集合形式的概念:
1、圆可以看作是到定点的距离等于定长的点的集合;
2、圆的外部:可以看作是到定点的距离大于定长的点的集合;
3、圆的内部:可以看作是到定点的距离小于定长的点的集合。
轨迹形式的概念:
1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;
2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);
3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;
4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;
5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
有关概念:
圆:到定点的距离等于定长的点的集合。
圆的内部:可以看作是圆心的距离小于半径的点的集合。
圆的外部:可以看作是圆心的距离大于半径的点的集合。
等圆:圆心不相同,半径相等的圆。
同心圆:圆心相同,半径不等的圆。
弧:圆上任意两点间的部分叫作圆弧,简称弧。按与半圆的大小关系可分为:优弧和劣弧。
等弧:在同圆或等圆中,能够重合的两条弧。
弦:连接圆上任意两点间的线段叫作弦,经过圆心的弦叫作直径,直径是最长的弦。
弦心距:圆心到直线的距离。
弓形:弧与所对的弦所组成的图形。
圆的内部:到圆心的距离小于半径的点的集合叫作圆的内部。
圆的外部:到圆心的距离大于半径的点的集合叫作圆的外部。
圆心角:顶点在圆心的角。
圆周角:顶点在圆周上,并且两边都和圆相交的角叫作圆周角。
弦切角、圆内角、圆外角及性质:
顶点在圆上,一边和圆相交,另一边和圆相切的角叫作弦切角。
顶点在圆外的角(两边与圆相交)的度数等于其所截两弧度数差的一半。
顶点在圆内的角(两边与圆相交)的度数等于其及其对顶角所截弧度数和的一半。
定理:不在同一直线上的三点确定一个圆。
相关概念及性质:三角形的外接圆,圆的内接三角形,三角形的外心。
三角形的外心的性质:三角形的外心到各个顶点的距离相等。
定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。