函数不可导点有几种情况?
1个回答
展开全部
函数不可导点四种情况:
1、无定义:无定义的点,没有导数存在。
2、不连续:不连续知的点,或称为离散点,导数不存在。
3、不光道滑:连续点,但是此点为尖尖点,左右两边的斜率不一样,也就是导数不一样,不可导。
4、导数值为∞:有定义,连续、光滑,但是斜率是无穷大。
导数其实也是极限的问题:
它反映的是瞬间自变量(x)极小的变化引起因变量(y)变化的比值的倒数dy/dx,也称为为变化率。我们这个世界万事万物无时无刻都在变化,包括我们的心跳,因此要研究这个世界是如何变化,要掌握它的运动规律,导数就是一个重要的工具了。
导数在不同领域中的意义有不同的解释,在数学函数中它表示斜率;在物理位移和时间关系中它是瞬时速度、加速度;在经济学中导数可以分析实际的动态变化,如它可以表示边际成本。这也是导数在实际应用的作用,任何变化的东西,通过导数就可以分析它的瞬态。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询