2010-08-23
展开全部
f(xy)=f(x)+f(y)
则可知,当令y=-1时
f(-x)=f(x)+f(-1)
而又可知当令x=y=-1时
f(1)=f(-1)+f(-1)
令x=y=1时
f(1)=f(1)+f(1)
故可知,f(1)=0, f(-1)=0
所以f(-x)=f(x)
即f(x)为偶函数
则可知,当令y=-1时
f(-x)=f(x)+f(-1)
而又可知当令x=y=-1时
f(1)=f(-1)+f(-1)
令x=y=1时
f(1)=f(1)+f(1)
故可知,f(1)=0, f(-1)=0
所以f(-x)=f(x)
即f(x)为偶函数
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询