星形线的面积怎样计算?

 我来答
菏侯腊r
高粉答主

2022-12-31 · 醉心答题,欢迎关注
知道小有建树答主
回答量:1039
采纳率:88%
帮助的人:28.8万
展开全部

计算公式如下:

[r(t)]^2=[x(t)]^2+[y(t)]^2=a^2(cost)^6+a^2(sint)^6
=a^2[(cost)^2+(sint)^2][(cost)^4+(sint)^4-(cost)^2(sint)^2]
=a^2[1-3(cost)^2(sint)^2]
所以面积
S=(1/2)∫[r(t)]^2dt
=(1/2)∫(0->2π) a^2[1-3(cost)^2(sint)^2]dt
=5πa^2/8

拓展资料:

星形线是内摆线的一种。

星形线(astroid)或称为四尖瓣线(tetracuspid),是一个有四个尖点的内摆线,也属于超椭圆的一种。

其英文名称得名自希腊文的星星,星形线几乎和椭圆的渐屈线相同。

若让一个半径为1/4的圆在一个半径为1的圆内部,延著圆的圆周旋转,小圆圆周上的任一点形成的轨迹即为星形线。


参考资料:百度百科-星形线

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式