怎么判断是否为二元函数的极值点?

 我来答
零罡0Du
2023-01-09 · 超过159用户采纳过TA的回答
知道小有建树答主
回答量:810
采纳率:0%
帮助的人:13.3万
展开全部


1.F(x、y)分别对x,y求偏导,目的是联立偏导方程,找出驻点。



2.Fxx*Fyy和Fxy*Fyx的相对数值大小作为判断依据,目的就是,判断第一步中驻点是否为极值点。

二元(或都多元)极值的求法思想与一元完全类似,试回忆一元函数求极值:



1.f'(x)=0,找出驻点。
2.f''(x)判断,驻点是否为极值。  

设函数 z = f ( x , y ) 在点 ( x 0 , y 0 ) 的某邻域内连续且有一阶及二阶连续偏导数 , 又  
f x ( x 0 , y 0 ) = 0 ,  
f y ( x 0 , y 0 ) = 0 ,  

f xx ( x 0 , y 0 ) = A ,
f xy ( x 0 , y 0 ) = B ,
f yy ( x 0 , y 0 ) = C ,

则 f ( x , y ) 在 ( x 0 , y 0 ) 处是否取得极值的条件如下:

(1) AC - B^2 >0 时具有极值 , 且当 A <0 时有极大值 , 当 A >0 时有极小值 ;

(2) AC - B^2 <0 时没有极值 ;

(3) AC - B^2 = 0 时可能有极值 , 也可能没有极值 .

是否是极值需用其它方法,一般可结合图形判定

在函数 f ( x , y ) 的驻点处

如果 f xx × f yy - f xy ^2 >0 , 则函数具有极值 , 且
当 f xx <0 时有极大值 ,  
当 f xx >0 时有极小值。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式