求由抛物线Y=X^2,Y=2X^2与直线Y=1所围的平面图形的面积

 我来答
华源网络
2022-07-31 · TA获得超过5581个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:145万
展开全部
x>0
所以抛物线是x=√y,x=√(y/2)
所以此时对y积分
抛物线交点是原点
所以S=∫(0到1)[√y-√(y/2)]dy
=∫(0到1)[y^(1/2)-√2/2*y^(1/2)]dy
=(2/3)*y^(3/2)-(√2/3)*y^(3/2)(0到1)
=(2-√2)/3
这是第一象限的
所以总面积=2*(2-√2)/3=(4-2√2)/3
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式