不定积分的换元问题!
1个回答
展开全部
具体回答如下:
令u=tanx/2
则sinx=2u/(1+u²)
cosx=(1-u²)/(1+u²)
dx=2du/(1+u²)
∫1/(sinx+cosx)
=∫2/(1+2u-u²)du
=√2/2∫[1/(u-(1-√2))-1/(u-(1+√2))]du
=√2/2ln|(u-(1-√2))/(u-(1+√2))|+C
=√2/2ln|(tanx/2-1+√2)/(tanx/2-1-√2)+C
不定积分的公式:
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询