矩阵可对角化的重要条件是什么?

 我来答
刺任芹O
2022-11-17 · TA获得超过6.2万个赞
知道顶级答主
回答量:38.7万
采纳率:99%
帮助的人:9055万
展开全部

n阶方阵可进行对角化的充分必要条件是:

  1. n阶方阵存在n个线性无关的特征向量

推论:如果这个n阶方阵有n个不同的特征值,那么矩阵必然存在相似矩阵

2.如果阶n方阵存在重复的特征值,每个特征值的线性无关的特征向量的个数恰好等于该特征值的重 复次数

现在从矩阵对角化的过程中,来说说这个条件是怎么来的.在矩阵的特征问题中,特征向量有一个很好的性质,即Aa=λa.

假设一种特殊的情形,A有n个不同的特征值λi,即Aai=λi*ai.令矩阵P=[a1 a2 ... an]这样以来AP=A*[a1 a2 ... an]=[A*a1 A*a2 ... A*an]=[λ1*a1 λ2*a2 ... λn*an]=P*B,其中B是对角阵.

B=

λ1 0 0 ...

0 λ2 0 ...

... ... ... ...

0 0 0 λn

由于不同特征值对应的特征向量是线性无关的,那么P是可逆矩阵,将上面等式换一种描述就是A=P*B*P-1 ,这也就是A相似与对角阵B定义了.



在这个过程中,A要能对角化有两点很重要:

P是怎么构成的?P由n个线性无关的向量组成,并且向量来自A的特征向量空间.

如果A由n个不同的特征值,1个特征值-对应1个特征向量,那么就很容易找到n个线性无关的特征向量,让他们组成P;

但是如果A有某个λ是个重根呢?比如λ=3,是个3重根.我们 知道对应的特征方程(3I-A)x=0不一定有3个线性无关的解.如果λ=3找不到3个线性无关的解,那么A就不能对角化了,这是因为能让A对角化的P矩阵不存在.

扩展资料:

可对角化矩阵是线性代数和矩阵论中重要的一类矩阵。如果一个方块矩阵 A 相似于对角矩阵,也就是说,如果存在一个可逆矩阵 P 使得 P −1AP 是对角矩阵,则它就被称为可对角化的。

如果 V 是有限维度的向量空间,则线性映射 T : V → V 被称为可对角化的,如果存在 V 的一个基,T 关于它可被表示为对角矩阵。对角化是找到可对角化矩阵或映射的相应对角矩阵的过程。

可对角化矩阵和映射在线性代数中有重要价值,因为对角矩阵特别容易处理: 它们的特征值和特征向量是已知的,并通过简单的提升对角元素到同样的幂来把一个矩阵提升为它的幂。

若尔当-谢瓦莱分解表达一个算子为它的对角部分与它的幂零部分的和。

定理1:

m级矩阵  或n维线性空间V的线性变换  可对角化的充要条件是  或  有n个线性无关的特征向量。当  可对角化时,与它相似的对角矩阵的主对角线上的元素就是 的全部特征值。

由上面的分析还知道,如果求出了矩阵  的n个线性无关的特征向量,那么用这些向量作列向量的矩阵T就使  成对角形,其主对角线上的元素就是  的全部特征值(按对应的特征向量排序)。

对角矩阵是指只有主对角线上含有非零元素的矩阵,即,已知一个n×n矩阵  ,如果对于 ,则该矩阵为对角矩阵。如果存在一个矩阵  ,使 的结果为对角矩阵,则称矩阵  将矩阵  对角化。对于一个矩阵来说,不一定存在将其对角化的矩阵,但是任意一个n×n矩阵如果存在n个线性不相关的特征向量,则该矩阵可被对角化

设M为元素取自交换体K中的n阶方阵,将M对角化,就是确定一个对角矩阵D及一个可逆方阵P,使M=PDP-1。设f为典范对应于M的Kn的自同态,将M对角化,就是确定Kn的一个基,使在该基中对应f的矩阵是对角矩阵。

矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。 [2]  在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。

将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。

参考资料:百度百科-可对角化矩阵

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式