设x+y+z=1,则2x^2+y^2+3z^2的最小值 我也知道用柯西不等式求 但我要具体解法

 我来答
华源网络
2022-08-22 · TA获得超过5603个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:149万
展开全部
(1)柯西不等式:设a,b,c,x,y,z是非0实数,则[a^2+b^2+c^2]*[x^2+y^2+z^2]≥[ax+by+cz]^2.等号仅当a:x=b:y=c:z时取得.(2)原式可化为[x*√2]^2+y^2+[z*√3]^2.为打字方便,可设M=[x*√2]^2+y^2+[z*√3]^2.N=(1/√2)^2+1^2+(1/√3)^2=11/6.由柯西不等式得:M*N≥(x+y+z)^2=1.===>11/6*M≥1.===>M≥6/11.即原式的最小值为6/11.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式