欧式几何与非欧几何的根本区别是什么?
一、欧式几何和非欧几何的主要区别如下:
1、欧氏几何的几何结构是平坦的空间结构背景下考察,而非欧几何关注弯曲空间下的几何结构。
2、欧式几何起源于公元前,而非欧几何是几何学发展到新的时代的产物,产生于19世纪20年代。
3、非欧几何产生于非欧空间,而非欧空间可以理解成扭曲了的欧式空间,它的坐标轴不再是直线,或者坐标轴之间并不正交(即不成90度)。而欧式几何的坐标轴是直线,坐标轴之间成90度。
4、非欧几何与欧氏几何最主要的区别在于公理体系中采用了不同的平行定理。
欧式几何提出平行公理又称“第五公设”,它的内容是:如果一条直线和两直线相交,所构成的两个同侧内角之和小两直角,那么两直线延长后必定在那两内角的一侧相交(把平行公理换成较通俗的表达形式,就是前面提到的:过已知直线外一点可以而且只能引一条和它平行的直线)。
非欧几何认为第五公设是不可证明的,并由否定第五公设的其他公理代替第五公设,即假定“过线外一点至少可作两条直线与已知直线平行”。由这条公理出发,不改变欧几何的其他公理,通过逻辑推理,形成了不同于欧氏几何但又能自圆其说的完整而严密的几何体系。
二、欧式几何与非欧几何的适用范围
欧氏几何主要研究平面结构的几何及立体几何,非欧几何是在一个不规则曲面上进行研究。
欧式几何可以用于研究平面上的几何,即平面几何;研究三维空间的欧几里得几何,通常叫做立体几何。
非欧几何适用于抽象空间的研究,即更一般的空间形式,使几何的发展进入了一个以抽象为特征的崭新阶段。非欧几何学还应用在爱因斯坦发展的广义相对论。
扩展资料:
非欧几何与欧氏几何最主要的区别在于公理体系中采用了不同的平行定理。非欧几何的分类主要分为罗氏几何和黎曼几何。
罗氏几何是俄国数学家罗巴切夫斯基创立并发展的,它是独立于欧氏几何的公理系统,欧氏几何的第五公设被替代为"双曲平行公理":过直线外一点至少有两条直线与已知直线平行。凡是涉及平行公理的结论,罗氏几何的结论都是不成立的。
黎曼几何:由德国数学家黎曼创立,也称椭圆几何,在这套公理体系下,并不承认平行线的存在,任何一个平面内两条直线一定有交点,认为平面内的直线可以无限延长,但总的长度是有限的,黎曼几何的模型我们可以看作一个经过改进的球面。随着黎曼几何的发展,发展出许多的数学分支,(代数拓扑学、偏微分方程、多复变函数理论等)成为微分几何的基础,甚至成为广义相对论理论基础。
参考资料: