三阶泰勒展开式怎么求?

 我来答
百度网友d6e0789
高粉答主

2022-10-31 · 说的都是干货,快来关注
知道答主
回答量:42
采纳率:100%
帮助的人:2.3万
展开全部

三阶泰勒展开式:

思路方法:求导得根号(1/(1-x^2))=(1-x^2)^(-1/2)=1+1/2x^2+(-1/2)(-3/2)/2*x^4+...,就是利用(1+x)^a的Taylor展式,把x换成-x^2即可。有了上面的Taylor展式,则arcsinx就是上面的Taylor展式从0到x的定积分

扩展资料:

泰勒公式形式:

泰勒公式是将一个在x=x0处具有n阶导数的函数f(x)利用关于(x-x0)的n次多项式来逼近函数的方法。

若函数f(x)在包含x0的某个闭区间[a,b]上具有n阶导数,且在开区间(a,b)上具有(n+1)阶导数,则对闭区间[a,b]上任意一点x,成立下式:

其中,表示f(x)的n阶导数,等号后的多项式称为函数f(x)在x0处的泰勒展开式,剩余的Rn(x)是泰勒公式的余项,是(x-x0)n的高阶无穷小

参考资料来源:百度百科--泰勒公式



已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式