单调递减区间和在区间上单调的区别

 我来答
刺任芹O
2022-11-16 · TA获得超过6.2万个赞
知道顶级答主
回答量:38.7万
采纳率:99%
帮助的人:9064万
展开全部

区别在于一个函数的单调区间不一定是一个区间,可能是多个区间,在区间上单调是指在某单一区间上单调性。

单调区间是指一个函数中所有递减或递增性质的区间;

在区间上单调是指某一个区间的单调性。

比如:

这个函数的单调增区间为(-1,1),(2,+∞)。而只能说在某一单一区间单调性,比如说在(0,2)的单调性,而这个区间不一定是单调的。

单调区间:

单调区间是指函数在某一区间内的函数值y,随自变量x增大而增大(或减小)恒成立。

单调区间是指函数在某一区间内的函数值Y,随自变量X增大而增大(或减小)恒成立。如果函数y=f(x)在某个区间是增函数或减函数。那么就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做y= f(x)的单调区间。单调区间f(x1)<f(x2)则称为单调增区间,反之则为单调减区间。

扩展资料

单调区间性质

若函数y=f(x)在某个区间是增函数或减函数,则就说函数在这一区间具有(严格的)单调性,这一区间叫做函数的单调区间。此时也说函数是这一区间上的单调函数。

注:在单调性中有如下性质。图例:↑(增函数)↓(减函数)

↑+↑=↑ 两个增函数之和仍为增函数

↑-↓=↑ 增函数减去减函数为增函数

↓+↓=↓ 两个减函数之和仍为减函数

↓-↑=↓ 减函数减去增函数为减函数

一般地,设函数f(x)的定义域为I:

如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)<f(x2)。那么就说f(x)在这个区间上是增函数。

相反地,如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)>f(x2),那么f(x)在这个区间上是减函数。

参考资料:百度百科—单调区间

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式