积分的微分与积分的求导有何联系与区别?

 我来答
社无小事
高能答主

2022-12-22 · 游戏也是生活的态度。
社无小事
采纳数:2168 获赞数:20384

向TA提问 私信TA
展开全部

∫f'(x)dx=∫d[f(x)]=f(x)+C。

f(x)就是原函数F(x)的导数,f(x)dx就是原函数F(x)的微分,因为d[F(x)]。

例如:x3是3x2的一个原函数,易知,x3+1和x3+2也都是3x2的原函数,因此,一个函数如果有一个原函数,就有许许多多原函数,原函数概念是为解决求导和微分的逆运算而提出来的。

例如:已知作直线运动的物体在任一时刻t的速度为v=v(t),要求它的运动规律 ,就是求v=v(t)的原函数,原函数的存在问题是微积分学的基本理论问题,当f(x)为连续函数时,其原函数一定存在。

积分基本公式

1、∫0dx=c

2、∫x^udx=(x^u+1)/(u+1)+c

3、∫1/xdx=ln|x|+c

4、∫a^xdx=(a^x)/lna+c

5、∫e^xdx=e^x+c

6、∫sinxdx=-cosx+c

7、∫cosxdx=sinx+c

8、∫1/(cosx)^2dx=tanx+c

9、∫1/(sinx)^2dx=-cotx+c

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式