二次函数的判别式怎么用?
1个回答
展开全部
△的判别式是根的判别式,是判断方程实根个数的公式。
在解题时应用十分广泛,涉及到解系数的取值范围、判断方程根的个数及分布情况等。一元二次方程ax^2+bx+c=0(a≠0)的根的判别式是b^2-4ac,用“Δ”表示(读做“delta”)。
△的判别式公式三种情况:
1、当△>0时,方程有两个不相等的实数根。
2、当△=0时,方程有两个相等的实数根。
3、当△<0时,方程没有实数根,方程有两个共轭虚根。
判别式在解题时应用十分广泛,涉及到解系数的取值范围、判断方程根的个数及分布情况等。一元二次方程ax^2+bx+c=0(a≠0)的根的判别式是b^2-4ac,用“Δ”表示。
一元二次方程判别式的应用,解一元二次方程,判断根的情况,根据方程根的情况,确定待定系数的取值范围,证明字母系数方程有实数根或无实数根,应用根的判别式判断三角形的形状,判断当字母的值为何值时,二次三项是完全平方式,可以判断抛物线与直线有无公共点。联立方程,可以判断抛物线与x轴有几个交点。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询