已知三次函数f(x)=x3+ax2+bx+c在x=1和x=-1时取极值,且f(-2)=-4.

 我来答
新科技17
2022-11-04 · TA获得超过5902个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:74.8万
展开全部
解题思路:(1)三次函数f(x)=x 3+ax 2+bx+c在x=1和x=-1时取极值,说明方程f′(x)=0的两个根为1和-1,求出a与b,再代入f(-2)=-4,求出c值;
(2)由(1)求出f(x)的解析式,利用导数研究函数的单调性,求出极值;
(3)由(2)已知f(x)的极大值和极小值,把端点值f(-2)和f(5),从而求出最值;

(1)∵三次函数f(x)=x3+ax2+bx+c在x=1和x=-1时取极值,
∴f′(x)=3x2+2ax+b,


f′(1)=0
f′(−1)=0可得

3+2a+b=0
3−2a+b=0解得

a=0
b=−3;
∴f(x)=x3-3x+c,∵f(-2)=-4,可得(-2)3-3×(-2)+c=0,解得c=2,
∴f(x)=x3-3x+2;
(2)∵f′(x)=3x2-3=3(x+1)(x-1),
若f′(x)>0即x>1或x<-1,f(x)为增函数,
若f′(x)<0即-1<x<1,f(x)为减函数,
f(x)在x=-1处取得极大值,在x=1处取得极小值,
f(x)极大值=f(-1)=-1+3+2=4,f(x)极小值=f(1)=1-3+2=0;
(3)∵求函数在区间[-2,5]的最值,
已知f(x)极大值=4,f(x)极小值=0,
f(-2)=(-2)3-3×(-2)+2=-8+6+2=0;
f(5)=53-3×5+2=112,
∴f(x)的最大值为112,f(x)的最小值为0;

点评:
本题考点: 利用导数求闭区间上函数的最值;利用导数研究函数的单调性;函数在某点取得极值的条件.

考点点评: 此题主要考查函数在某点的极值,利用导数研究函数的单调性,以及掌握不等式的解法.这是高考必考的考点;
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式