怎样利用穿针引线法求多项式不等式的解集?
1个回答
展开全部
穿针引线法,是判断多项式函数以根为区间端点的各区间值符号的方法,故而也可以用来求多项式不等式的解集。
具体做法如下:
需要注意的是,多现实最高次项的系数符号,决定了曲线在根区间之外的符号,最高次项系数a为正就在最大根右边全部位于x轴上方,而且如果总次数为奇数,那么最小根左边的曲线在x轴下方;偶数的话和右边一样也在上方;系数 为负的话就和正的时候相反,这个可以作为曲线开始画的时候的起步点的判定办法。
具体例子:
它的图像如下:
这样就可确定p7(x)在各个区间的取值符号。
扩展:不光是多项式,经常也将分子分母都是多项式的分式的符号判断也化为多项式问题。比如pn(x)/qm(x),因为分式相除的符号与相乘的符号是一样的故可以通过讨论pn(x)qm(x)问题来解决,只是要注意分母有意义的问题。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询