不动点法求数列通项原理
不动点法求数列通项原理是不动点是使f(x)=x的x值,设不动点为x0,则f(x0)-x0=0,即x是f(x)-x0=0的根。
f(x)-x0因式分解时有x-x0这个因子,对数列有a(n+1)=f(an),两边同时减去不动点x0有a(n+1)-x0=f(an)-x0,f(an)-x0只不过是把x换成了an,所以f(an)-x0有an-x0这个因子,所以a(n+1)-x0=(an-x0)*g(an),减去不动点后两边出现了形式相同的项an-x0,g(an)则相当于公比。
不动点法是解方程的一种一般方法,对研究方程解的存在性、唯一性和具体计算有重要的理论与实用价值。在数学的不同部分有很多定理保证函数、在一定的条件下,必定有一个或者更多的不动点。这些在最基本的定性结果当中,那些普遍性应用的不动点定理是非常具有价值的洞察。
不动点:
平衡和稳定性是许多领域的基本概念,可以用不动点来描述。例如在经济学赛局理论中,一个赛局中的最佳回应:纳什均衡点即是一个不动点。然而在物理学中,更确切地说在相变理论中,靠近一不稳定的不动点线性化,是1982年获颁诺贝尔物理学奖得主威尔逊,因他发明了重整化群的作品,并对“临界现象”这个术语作了数学解释。
对于编程语言的编译器,例如在数据流分析中,不动点计算通常用于需要代码优化的程序分析。互联网上所有网页的PageRank值向量,即是由其链接结构导出的线性变换的不动点。在逻辑学家索尔·阿伦·克里普克具有影响力的真相理论中,也运用了不动点的观点。
2024-04-02 广告