三角函数和角公式推导

 我来答
匿名用户
2023-02-04
展开全部

三角函数的推导公式,万能公式sin2α=2sinαcosα=2sinαcosα/[cos2(α)+sin2(α)],

(因为cos2(α)+sin2(α)=1)

再把分式上下同除cos^2(α),可得sin2α=2tanα/[1+tan2(α)]

然后用α/2代替α即可。

同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。

三角函数推导公式——万能公式推导

sin2α=2sinαcosα=2sinαcosα/[cos2(α)+sin2(α)],

(因为cos2(α)+sin2(α)=1)

再把分式上下同除cos^2(α),可得sin2α=2tanα/[1+tan2(α)]

然后用α/2代替α即可。

同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。

三角函数推导公式——三倍角公式推导

tan3α=sin3α/cos3α

=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)

=[2sinαcos2(α)+cos2(α)sinα-sin3(α)]/[cos3(α)-cosαsin2(α)-2sin2(α)cosα]

上下同除以cos3(α),得:

tan3α=[3tanα-tan3(α)]/[1-3tan2(α)]

sin3α=sin(2α+α)=sin2αcosα+cos2αsinα

=2sinαcos2(α)+[1-2sin2(α)]sinα=2sinα-2sin3(α)+sinα-2sin3(α)

=3sinα-4sin3(α)

cos3α=cos(2α+α)=cos2αcosα-sin2αsinα

=[2cos2(α)-1]cosα-2cosαsin2(α)

=2cos3(α)-cosα+[2cosα-2cos3(α)]

=4cos3(α)-3cosα

sin3α=3sinα-4sin3(α)

cos3α=4cos3(α)-3cosα

三角函数推导公式——和差化积公式推导

首先,我们知道sin(a+b)=sinacosb+cosasinb,sin(a-b)=sinacosb-cosasinb我们把两式相加就得到sin(a+b)+sin(a-b)=2sinacosb

同理,若把两式相减,就得到cosasinb=[sin(a+b)-sin(a-b)]/2

同样的,我们还知道cos(a+b)=cosacosb-sinasinb,cos(a-b)=cosacosb+sinasinb

所以,把两式相加,我们就可以得到cos(a

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式