求解一道高数证明题,要求解题步骤,谢谢!O(∩_∩)O~好的可加分

设在上半平面D={(x,y)|y>0}内,函数f(x,y)具有连续偏导数,且对任意的t>0都有f(tx,ty)=t^(-2)f(x,y).证明:对D内的任意分段光滑的有向... 设在上半平面D={(x,y)|y>0}内,函数f(x,y)具有连续偏导数,且对任意的 t>0都有f(tx,ty)=t^(-2) f(x,y).证明:对D内的任意分段光滑的有向简单闭曲线L,都有∮yf(x,y)dx - xf(x,y)dy=0. (积分区域为L)
请写出解题步骤,万分感谢!
展开
木槌打铁
2010-08-28 · 超过14用户采纳过TA的回答
知道答主
回答量:28
采纳率:0%
帮助的人:0
展开全部
证∮yf(x,y)dx - xf(x,y)dy=0,对这个用格林,或者积分与路径无关,只需证yf'y(x,y)+2f(x,y)+xf'x(x,y)=0;
f(tx,ty)=t^(-2) f(x,y),对t求导得yf'y(tx,ty)+xf'x(tx,ty)=-2t^(-3)f(x,y),令t=1既得上面需证的式子,得证
貌似上一个题也是答的你的= =,给点分啦
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式