什么是复变函数?
(1+i)^i=e^[iLn(1+i)]=e^{i[ln|1+i|+iarg(1+i)+i2kπ]}=e^{i[ln√2+iπ/4+i2kπ]}=e^(iln√2-π/4-2kπ),其主值=e^(iln√2-π/4)。
定义
复变数复值函数的简称。设A是一个复数集,如果对A中的任一复数z,通过一个确定的规则有一个或若干个复数w与之对应,就说在复数集A上定义了一个复变函数,记为
w=ƒ(z)
这个记号表示,ƒ(z)是z通过规则ƒ而确定的复数。如果记z=x+iy,w=u+iv,那么复变函数w=ƒ(z)可分解为w=u(x,y)+iv(x,y);所以一个复变函数w=ƒ(z)就对应着一对两个实变数的实值函数。除非有特殊的说明,函数一般指单值函数,即对A中的每一z,有且仅有一个w与之对应。
例如,f(z)=是复平面上的复变函数。但f(z)=
在复平面上并非单值,而是多值函数。对这种多值函数要有特殊的处理方法(见解析开拓、黎曼曲面)。
对于z∈A,(z)的全体所成的数集称为A关于的像,记为(A)。函数规定了A与(A)之间的一个映射。例如在w=z2的映射下,z平面上的射线argz=θ与w平面上的射线argw=2θ对应;如果(A)∈A*,称把A映入A*。如果(A)=A*,则称把A映成A*,此时称A为A*的原像。
对于把A映成A*的映射,如果z1与z2相异必导致(z1)与(z2)也相异,则称是一对一的。在一对一的映射下,对A*上的任一w,A上必有一个z与之对应,称此映射为的反函数,记为
z=ƒ-1(w)
以上内容参考:百度百科-复变函数
1. $f(z) = z^2+1$:这是一个简单的二次函数,输入为复数,输出为复数。
2. $f(z) = e^z$:这里的 $e$ 是自然对数的底数,$f(z)$ 为复数 $z$ 上的指数函数。
3. $f(z) = \sin z$:这是复数 $z$ 上的正弦函数,其定义方式类似于实数情况下的正弦函数。
4. $f(z) = \frac{1}{z}$:这是复数 $z$ 上的倒数函数,它对于 $z=0$ 的情况存在极点。
以上只是一些常见的例子,实际上复变函数有各种形式,包括有理函数、三角函数、指数函数、对数函数等等。