高数极限题求教

若实数b满足|b|>1则lim(1+b+b^2...+b^(n-1))/b^n=?数列{an}1/n^21≤n≤1000n^2/(n^2-2n)n>1001则{an}极限... 若实数b满足 |b|>1 则lim(1+b+b^2...+b^(n-1) )/b^n =?

数列{an} 1/n^2 1≤n≤1000 n^2/(n^2-2n) n>1001 则{an}极限值

A、 0 B、1 C、0or1 D、不存在

谢谢大家
第二提是两种情况 分大括号的
展开
兔宝宝蹦蹦
2010-08-23 · TA获得超过1272个赞
知道小有建树答主
回答量:327
采纳率:0%
帮助的人:168万
展开全部
1.分子用等比求和公式:
lim(1+b+b^2...+b^(n-1) )/b^n
n→+∞
=lim(1-b^n)/[(1-b)·b^n]
n→+∞
=lim(1/b^n-1)(1-b)
n→+∞
∵ |b|>1
∴0<1/|b|<1
∴(1/b)^n=1/b^n→0,n→+∞
∴原极限=(0-1)/(1-b)
=1/(b-1)

2.an={1/n² 1≤n≤1000
n²/(n²-2n) n>1001
要求数列{an}的极限即要求 lim an
n→+∞
∴{an}的前1000项不必看
∴lim an =lim n²/(n²-2n)
n→+∞ n→+∞
=lim 1/(1-2/n)
n→+∞
=1
∴应选B
314234
2010-08-23 · TA获得超过658个赞
知道小有建树答主
回答量:593
采纳率:0%
帮助的人:402万
展开全部
1.lim(1+b+b^2...+b^(n-1) )/b^n =LIM(1-b^n)/(1-b)b^n=0
2.数列极限与前 n项无关。{an}极限值==LIM n^2/(n^2-2n) n=0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
yx208
2010-08-23 · TA获得超过1.2万个赞
知道大有可为答主
回答量:2365
采纳率:66%
帮助的人:1985万
展开全部
1+b+b^2...+b^(n-1)=(b^n-1)/(b-1)
lim(1+b+b^2...+b^(n-1) )/b^n =1/(b-1)*lim(b^n-1)/b^n=1/(b-1)

第二题看不明白式子,写得太乱!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
南宫龙野
2010-08-30
知道答主
回答量:10
采纳率:0%
帮助的人:9万
展开全部
第一题:分子为等比数列,得(1-b^n)/(1-b),原式化为(b^n-1)/(b^(n+1)-b^n),然后抓大头,分子分母同除b^n,可得极限为1/(b-1);
第二题:当n→+∞时,显然n>1001,只要算出后面的式子的极限就行了,先约分,再用罗比达法则就可算出是1了。
应该对的吧。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式