线性代数中,对称矩阵的特征值怎么求

 我来答
创作者AHLhc3019hw
高粉答主

2023-07-02 · 学习数学思维,感受数学乐趣
创作者AHLhc3019hw
采纳数:46 获赞数:64895

向TA提问 私信TA
展开全部

证法一:

反对称矩阵A,满足A'=-A,设a为A的特征值,x为对应特征向量.则是Ax=ax.

对任一向量都有x'Ax=0(因为x'Ax是一个数,数的转置是它本身,就有x'Ax=(x'Ax)'=x'A'x=-x'Ax,

看等式两边),尤其x为特征向量时也成立,则ax'x=x'Ax=0.其中x为非零向量.

同理A的共轭也是反对称阵,且特征值为a共轭,对应特征向量为x共轭,就有a共轭x'共轭x共轭=0

由ax'x=0,则a为0,或纯虚数(这要考虑x为复向量时,x'x的情况才能得出结论).

证法二:

设A反称,且AX=λX,(X!=0)

则(X的共轭转置)AX=λ(X的共轭转置)X=λ|X|^2

两边取转置,并注意到A实反称,则有-(X的共轭转置)AX=λ(X的共轭转置)X=(λ的共轭)|X|^2

两式相加得:【λ+(λ的共轭)】*|X|^2=0

因为X是特征向量,!=0,所以:【λ+(λ的共轭)】=0

扩展资料:

1、每一个线性空间都有一个基。

2、对一个 n 行 n 列的非零矩阵 A,如果存在一个矩阵 B 使 AB = BA =E(E是单位矩阵),则 A 为非奇异矩阵(或称可逆矩阵),B为A的逆阵。

3、矩阵非奇异(可逆)当且仅当它的行列式不为零。

4、矩阵非奇异当且仅当它代表的线性变换是个自同构。

5、矩阵半正定当且仅当它的每个特征值大于或等于零。

6、矩阵正定当且仅当它的每个特征值都大于零。

7、解线性方程组的克拉默法则。

8、判断线性方程组有无非零实根的增广矩阵和系数矩阵的关系。

参考资料来源:百度百科-线性代数



Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式