高一三角恒等变形的有关问题

1..在三角形ABC中,若sinAsingC=(cosA/2)^2,则三角形ABC是?【答案等腰三角形】2.已知sinα=cos2α,α∈(π/2,π),则cotα的值为... 1..在三角形ABC中,若sinAsingC=(cosA/2)^2,则三角形ABC是?【答案等腰三角形】
2.已知sinα=cos2α,α∈(π/2,π),则cotα的值为?【答案根号3】
3.已知α,β为锐角,且sinα-sinβ=-½,cosα-cosβ=½,则tan(α-β)的值为?【答案-根号7/3】
请给我详细的过程,谢谢各位回答帮助
展开
越小梦
2010-08-25 · TA获得超过1201个赞
知道小有建树答主
回答量:564
采纳率:0%
帮助的人:1090万
展开全部
1、
[cos(A/2)]^2=(cosA+1)/2
因此原式可化为
2sinAsinC=cosA+1

令A=30°
很容易得到
sinC=1+(1/2)根号3

实际上sinC不可能大于一
因此我有足够的理由楼主给的题目错了
根据我做题的过程
如果我没猜错的话
楼主的题目应该是
在三角形ABC中,若sinBsinC=(cosA/2)^2,则三角形ABC是

如果用积化和差公式
解法如下:
[cos(A/2)]^2=(cosA+1)/2
因此原式可化为
2sinBsinC=cosA+1

2sinBsinC-(cosA+1)
=2sinBsinC-(-cos(π-(B+C))+1)
=2sinBsinC+cos(B+C)-1
=2sinBsinC+cosBcosC-sinBsinC-1
=cosBcosC+sinBsinC-1
=cos(B-C)-1
=0
因此cos(B-C)=1
又因为B和C在三角形中
因此B-C=0
B=C
因此三角形ABC是等腰三角形

如果用积化和差公式来解
解法如下

sinαsinβ = [cos(α-β)-cos(α+β)] /2
则2sinAsinB=cos(B-C)-cos(B+C)=cosA+1

cos(B-C)-cos(B+C)=-cos(B+C)+1
即cos(B-C)=1
可得B=C

第二题%%%%%%%%%%%%%%%%%%%%
cos2α=(cosα)^2-(sinα)^2=1-2(sinα)^2
因此
sinα=1-2(sinα)^2
即2(sinα)^2-sinα-1=0
即(2sinα-1)(sinα+1)=0
解得sinα=1/2或者sinα=-1
又α∈(π/2,π),
因此
sinα=1/2
解得
α=30°
因此
cotα=cot30°=根号3

第三题%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
(sinα-sinβ)^2+(cosα-cosβ)^2
=(sinα)^2+(sinβ)^2-2sinαsinβ+(cosα)^2+(cosβ)^2-2cosαcosβ
=2-2sinαsinβ-2cosαcosβ
=1/2

则cosαcosβ+sinαsinβ=1-1/4=3/4
即cos(α-β)=3/4
又α,β为锐角,
且由题得
sinα<sinβ
cosα>cosβ
因此α-β<0。并且α-β∈(-π/2,0),
则sin(α-β)
=-根号(1-(cos(α-β))^2)
=-根号(1-9/16)
=-(根号7)/4

因此
tan(α-β)
=(sin(α-β))/cos((α-β))
=(-(根号7)/4)/(3/4)
=-(根号7)/3
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式