已知函数f(x)=sinx/2cosx/2+cos^2(x/2)-1/2
f(x)=sin(x/2)cos(x/2)+cos^2(x/2)-(1/2)=(1/2)×sinx+(1/2)×(cosx+1)-(1/2)=(1/2)×(sinx+co...
f(x)=sin(x/2)cos(x/2)+cos^2(x/2)-(1/2)
=(1/2)×sinx+(1/2)×(cosx+1)-(1/2)
=(1/2)×(sinx+cosx)
=(√2/2)×sin(x+(π/4))
(1)若f(a)=√2/4=(√2/2)×sin(a+(π/4))
则sin(a+(π/4))=1/2,a+(π/4)=2kπ+(π/2)±((2π)/3);
又a∈(0,π),则a=π/12或(5π)/12;
为什么(1/2)×(sinx+cosx)
=(√2/2)×sin(x+(π/4))
为什么还要乘以(1/2)*√2*(1/2)啊 展开
=(1/2)×sinx+(1/2)×(cosx+1)-(1/2)
=(1/2)×(sinx+cosx)
=(√2/2)×sin(x+(π/4))
(1)若f(a)=√2/4=(√2/2)×sin(a+(π/4))
则sin(a+(π/4))=1/2,a+(π/4)=2kπ+(π/2)±((2π)/3);
又a∈(0,π),则a=π/12或(5π)/12;
为什么(1/2)×(sinx+cosx)
=(√2/2)×sin(x+(π/4))
为什么还要乘以(1/2)*√2*(1/2)啊 展开
2个回答
展开全部
这个简单
(1/2)×(sinx+cosx)
=(1/2)*√2*(1/√2)(sinx+cosx)
=(√2/2)(√2/2*sinx+√2/2*cosx)
而sin(π/4)=cos(π/4)=√2/2
所以就变成了
上式=(√2/2)(cos(π/4)*sinx+sin(π/4)*cosx)
根据和角公式
Sin(A+B)=SinA*CosB+SinB*CosA
这里A=x,B=π/4
于是有结果
上式=(√2/2)×sin(x+(π/4))
因为我提了个根号2出来,但是笔误少加一个根号,应该没那么难看出来吧Orz....已经修正了
(1/2)×(sinx+cosx)
=(1/2)*√2*(1/√2)(sinx+cosx)
=(√2/2)(√2/2*sinx+√2/2*cosx)
而sin(π/4)=cos(π/4)=√2/2
所以就变成了
上式=(√2/2)(cos(π/4)*sinx+sin(π/4)*cosx)
根据和角公式
Sin(A+B)=SinA*CosB+SinB*CosA
这里A=x,B=π/4
于是有结果
上式=(√2/2)×sin(x+(π/4))
因为我提了个根号2出来,但是笔误少加一个根号,应该没那么难看出来吧Orz....已经修正了
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询