2个回答
展开全部
1 z=e^(yln(1+xy))
ðz/ðy=e^(yln(1+xy))*[ln(1+y)+y*1/(1+xy)*x]=(1+xy)^y*[ln(1+y)+xy/(1+xy)]
2 ðz/ðx=1/[1+(x+y)^2/(1-xy)^2]* [(1-xy+y(x+y))/(1-xy)^2]
=(1-xy)^2/[1+x^2y^2+x^2+y^2]*(1+y^2)/(1-xy)^2
=1/[(1+x^2)(1+y^2)]*(1+y^2)=1/(1+x^2)
同理可得ðz/ðy=1/(1+y^2)
3 dz/dt=dz/dx*dx/dt+dz/dy*dy/dt=e^(x-2y)cost-2e^(x-2y)*3t^2
=e^(x-2y)[cost-6t^2]=z(cost-6t^2)
ddz/(dt)^2=d(e^(x-2y)(cost-6t^2))dt=(cost-6t^2)*dz/dt+zd(cost-6t^2)/dt
=z(cost-6t^2)^2+z*(-sint-12t)
=z[(cost)^2-12t^2cost+36t^4-12sint-12t]
ðz/ðy=e^(yln(1+xy))*[ln(1+y)+y*1/(1+xy)*x]=(1+xy)^y*[ln(1+y)+xy/(1+xy)]
2 ðz/ðx=1/[1+(x+y)^2/(1-xy)^2]* [(1-xy+y(x+y))/(1-xy)^2]
=(1-xy)^2/[1+x^2y^2+x^2+y^2]*(1+y^2)/(1-xy)^2
=1/[(1+x^2)(1+y^2)]*(1+y^2)=1/(1+x^2)
同理可得ðz/ðy=1/(1+y^2)
3 dz/dt=dz/dx*dx/dt+dz/dy*dy/dt=e^(x-2y)cost-2e^(x-2y)*3t^2
=e^(x-2y)[cost-6t^2]=z(cost-6t^2)
ddz/(dt)^2=d(e^(x-2y)(cost-6t^2))dt=(cost-6t^2)*dz/dt+zd(cost-6t^2)/dt
=z(cost-6t^2)^2+z*(-sint-12t)
=z[(cost)^2-12t^2cost+36t^4-12sint-12t]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询