关于数学的分配问题,求数学高手
例:有100件货,共计385.4吨,每件从3吨到4吨不等,精确到小数点后两位,如3.44吨,现在有15个集装箱,每个箱子装货最大不能超过25.9吨,要把这100件货全部装...
例:有100件货,共计385.4吨,每件从3吨到4吨不等,精确到小数点后两位,如3.44吨,现在有15个集装箱,每个箱子装货最大不能超过25.9吨,要把这100件货全部装进15个箱子,而且每个箱子都不能超重.
怎样通过数学知识来完成?求公式方法~或者如何利用excl软件完成???
注:求分配方法而非此例题答案,忘各位数学高手看清题目,不要浪费精力算结果~ 展开
怎样通过数学知识来完成?求公式方法~或者如何利用excl软件完成???
注:求分配方法而非此例题答案,忘各位数学高手看清题目,不要浪费精力算结果~ 展开
4个回答
展开全部
这个肯定是无解的
假设存在一种分配方案
15个集装箱总载重是15*25.9=388.5吨
货物总计是385.4吨
即最多只能浪费3.1吨
每个箱子的最大载重为25.9吨
每件货物重量为3<=x<=4
所以 每个箱子可以放货物的数量为y [25.9/4] <=y<=[25.9/3]
即6<=y<=8
当存放6件货物时,每个箱子至少浪费了25.9-6*4=1.9吨载重
因为最多只能浪费3.1吨载重,所以存放6件货物最多只有1个箱子
所以总货物的件数>=6+(15-1)*7=6+98=104
这个和只有100件货物矛盾。
所以不可能存在这样一种分配方案。
假设存在一种分配方案
15个集装箱总载重是15*25.9=388.5吨
货物总计是385.4吨
即最多只能浪费3.1吨
每个箱子的最大载重为25.9吨
每件货物重量为3<=x<=4
所以 每个箱子可以放货物的数量为y [25.9/4] <=y<=[25.9/3]
即6<=y<=8
当存放6件货物时,每个箱子至少浪费了25.9-6*4=1.9吨载重
因为最多只能浪费3.1吨载重,所以存放6件货物最多只有1个箱子
所以总货物的件数>=6+(15-1)*7=6+98=104
这个和只有100件货物矛盾。
所以不可能存在这样一种分配方案。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
不知您是高中还是初中,高中有一个数列知识,你可以思考一下,试试看
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询