若P(x,y)在圆(x-2)^2+y^2=3上运动,则y/(x-4)的最小值等于
2个回答
展开全部
解:将y/(x-4)看成(y-0)/(x-4),那么它表示圆(x-2)^2+y^2=3上的任意点P(x,y)与定点Q(4,0)所在直线的斜率,记为k,则k=(y-0)/(x-4),而定点Q(4,0)在圆(x-2)^2+y^2=3外,且圆(x-2)^2+y^2=3的最右点为(2+3^(1/2),0),显然4>3^(1/2),那么,从定点Q(4,0)向圆(x-2)^2+y^2=3作切线,有两条,
斜率较小的那一条切线的斜率-3^(1/2)就是y/(x-4)的最小值。
斜率较小的那一条切线的斜率-3^(1/2)就是y/(x-4)的最小值。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询